Jumat, 23 Juli 2010

Tangen

Tangen (bahasa Belanda: tangens; lambang tg, tan) dalam matematika adalah perbandingan sisi segitiga yang ada di depan sudut dengan sisi segitiga yang terletak di sudut (dengan catatan bahwa segitiga itu adalah segitiga siku-siku atau salah satu sudut segitiga itu 90o). Perhatikan segitiga di kanan; berdasarkan definisi tangen di atas maka nilai tangen adalah

 \tan A = {\mbox{a} \over \mbox{b}} \qquad \tan B = {\mbox{b} \over \mbox{a}}

Nilai tangen positif di kuadran I dan III dan negatif di kuadran II dan IV.

Right triangle

Hubungan Nilai Tangen dengan Nilai Sinus dan Cosinus

\tan A = \frac{Sin A}{Cos A}\,

Nilai Tangen Sudut Istimewa

\tan 0^o = 0\,

\tan 15^o = 2 - \sqrt {3},

\tan 30^o = \frac{\sqrt {3}}{3}\,

\tan 37^o = \frac{3}{4}\,

\tan 45^o = 1\,

\tan 53^o = \frac{4}{3}\,

\tan 60^o = \sqrt{3}\,

\tan 75^o = 2 + \sqrt {3},

\tan 90^o = \infty\,

Kotangen


Kotangen (lambang: cot, cotg, atau cotan) dalam matematika adalah perbandingan sisi segitiga yang terletak pada sudut dengan sisi segitiga yang terletak di depan sudut (dengan catatan bahwa segitiga itu adalah segitiga siku-siku atau salah satu sudut segitiga itu 90o). Perhatikan segitiga di kanan; berdasarkan definisi kotangen di atas maka nilai kotangen adalah

 \cot A = {\mbox{b} \over \mbox{a}} \qquad \cot B = {\mbox{a} \over \mbox{b}}

Hubungan kotangen dengan tangen:

 \cot A = \frac{1}{\tan A}\,

Right triangle


Tidak ada komentar:

Posting Komentar