Jumat, 23 Juli 2010

Kosinus

Kosinus atau cosinus (simbol: cos) dalam matematika adalah perbandingan sisi segitiga yang terletak di sudut dengan sisi miring (dengan catatan bahwa segitiga itu adalah segitiga siku-siku atau salah satu sudut segitiga itu 90o). Perhatikan segitiga di kanan. Berdasarkan definisi kosinus di atas maka nilai kosinus adalah

 \cos A = {\mbox{b} \over \mbox{c}} \qquad \cos B = {\mbox{a} \over \mbox{c}}

Nilai kosinus positif di kuadran I dan IV dan negatif di kuadran II dan III.

Right triangle

Nilai cosinus sudut istimewa

\cos 0^o = 1\,

\cos 15^o = \frac{\sqrt{6} + \sqrt{2}}{4}\,

\cos 30^o = \frac{\sqrt{3}}{2}\,

\cos 37^o = \frac{4}{5}\,

\cos 45^o = \frac {\sqrt{2}}{2}\,

\cos 53^o = \frac{3}{5}\,

\cos 60^o = \frac {1}{2}\,

\cos 75^o = \frac{\sqrt{6} - \sqrt{2}}{4}\,

\cos 90^o = 0\,

Hukum cosinus


Hukum kosinus, atau disebut juga aturan kosinus, dalam trigonometri adalah aturan yang memberikan hubungan yang berlaku dalam suatu segitiga, yaitu antara panjang sisi-sisi segitiga dan kosinus dari salah satu sudut dalam segitiga tersebut.

Perhatikan gambar segitiga di kanan.

Aturan kosinus menyatakan bahwa

c^2 = a^2 + b^2 - 2ab \cos \gamma\,

dengan \gamma\, adalah sudut yang dibentuk oleh sisi a dan sisi b, dan c adalah sisi yang berhadapan dengan sudut \gamma\,.

Aturan yang sama berlaku pula untuk sisi a dan b:

a^2 = b^2 + c^2 - 2bc \cos \alpha\,
b^2 = a^2 + c^2 - 2ac \cos \beta\,

Dengan kata lain, bila panjang dua sisi sebuah segitiga dan sudut yang diapit oleh kedua sisi tersebut diketahui, maka kita dapat menentukan panjang sisi yang satunya. Sebaliknya, jika panjang dari tiga sisi diketahui, kita dapat menentukan besar sudut dalam segitiga tersebut. Dengan mengubah sedikit aturan kosinus tadi, kita peroleh:

\cos \alpha\ = {b^2 + c^2 - a^2 \over 2bc}
\cos \beta\ = {a^2 + c^2 - b^2 \over 2ac}
\cos \gamma\ = {a^2 + b^2 - c^2 \over 2ab}

Hukum Kosinus Pertama

a = b \cos \gamma + c \cos \beta\,
b = c \cos \alpha + a \cos \gamma\,
c = a \cos \beta + b \cos \alpha\,

Hukum Kosinus Kedua

a^2 = b^2 + c^2 - 2bc \cos \alpha\,
b^2 = a^2 + c^2 - 2ac \cos \beta\,
c^2 = a^2 + b^2 - 2ab \cos \gamma\,

Tidak ada komentar:

Posting Komentar